ZnO Nanowire/p-GaN Heterojunction LEDs

نویسندگان

  • Xinyu Wang
  • Jesse Cole
  • Amir M. Dabiran
  • Heiko O. Jacobs
چکیده

This article reports forward and reverse biased emission in vertical ZnO nanowire/p-GaN heterojunction light emitting diodes (LEDs) grown out of solution on Mg-doped p-GaN films. The electroluminescence spectra under forward and reverse bias are distinctly different. Forward bias showed two peaks centered around 390 nm and 585 nm, while reverse bias showed a single peak at 510 nm. Analysis of the current-voltage characteristics and electroluminescence spectra is presented to determine the transport mechanism and location of electron hole recombination. Reverse bias transport and luminescence are attributed to hot-hole injection from the ZnO nanowires into the GaN film through tunneling breakdown. Forward bias transport and luminescence are attributed to hole injection from the GaN into the ZnO and recombination at defect states inside the ZnO yielding distinct color variations between individual wires. Major resistive losses occurred in the GaN lateral thin film connecting to the vertical ZnO nanowires.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electroluminescence of ZnO Nanowire/p-GaN Heterojunction Light Emitting Diodes

This article reports forward and reverse biased emission in vertical ZnO nanowire/p-GaN heterojunction light emitting diodes (LEDs) grown out of solution on Mg-doped p-GaN films. The electroluminescence spectra under forward and reverse bias are distinctly different. Forward bias showed two peaks centered around 390 nm and 585 nm, while reverse bias showed a single peak at 510 nm. Analysis of t...

متن کامل

Ordered nanowire array blue/near-UV light emitting diodes.

ZnO-based light emitting diodes (LEDs) have been considered as a potential candidate for the next generation of blue/ near-UV light sources, [ 1 ] due to a direct wide bandgap energy of 3.37 eV, a large exciton binding energy of 60 meV at room temperature, and several other manufacturing advantages of ZnO. [ 2 ] While the pursuit of stable and reproducible p-ZnO is still undergoing, [ 3,4 ] het...

متن کامل

Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes

This paper addressed the effect of post-annealed treatment on the electroluminescence (EL) of an n-ZnO/p-GaN heterojunction light-emitting diode (LED). The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using mea...

متن کامل

The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence

Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of th...

متن کامل

Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes

The incorporation of doping elements in ZnO nanostructures plays an important role in adjusting the optical and electrical properties in optoelectronic devices. In the present study, we fabricated 1-D ZnO nanorods (NRs) doped with different In contents (0% ~ 5%) on p-GaN films using a facile hydrothermal method, and investigated the effect of the In doping on the morphology and electronic struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007